
ALTERNATING PROJECTION, PTYCHOGRAPHIC IMAGING AND PHASE

SYNCHRONIZATION

STEFANO MARCHESINI‡, YU-CHAO TU†, AND HAU-TIENG WU♦

Abstract. We demonstrate the global convergence of the alternating projection algorithm to a unique

solution up to a global phase factor. Additionally, for the ptychographic imaging problem, we discuss
phase synchronization and connection graph Laplacian, and show how to construct an accurate initial

guess to accelerate convergence speed to handle the big imaging data in the coming new light source

era.

1. Introduction

The reconstruction of a scattering potential from measurements of scattered intensity in the far-field
has occupied scientists and applied mathematicians for over a century, and arises in fields as varied as
optics [32, 45], astronomy [33], X-ray crystallography [26], tomographic imaging [52], holography [21, 49],
electron microscopy [38] and particle scattering generally. Although phase-less diffraction measurements
using short wavelength (such as X-ray, neutron, or electron wavepackets) have been at the foundation of
some of the most dramatic breakthrough in science - such as the first direct confirmation of the existence
of atoms [10, 11], the structure of DNA [67], RNA [23] and over 70,000 proteins or drugs involved in
human life [8, 43] - the solution to the scattering problem for a general object was generally thought
to be impossible for many years. Nevertheless, numerous experimental techniques that employ forms
of interferometric/holographic [21, 49] measurements, gratings [56], and other phase mechanisms like
random phase masks, sparsity structure, etc [1, 4, 15, 14, 65, 30, 66, 3] to help overcome the problem of
phase-less measurements have been proposed over the years [54, 29, 37].

More recently an experimental technique has emerged that enables to image what no-one was able to see
before: macroscopic specimens in 3D at wavelength (i.e. potentially atomic) resolution, with chemical
state specificity. Ptychography was proposed in 1969 [41, 40, 53, 17, 57] to improve the resolution in
electron or x-ray microscopy by combining microscopy with scattering measurements. This technique
enables one to build up very large images at wavelength resolution by combining the large field of view
of a high precision scanning microscope system with the resolution enabled by diffraction measurements.

Initially, technological problems made ptychography impractical. Now thanks to advances in source
brightness [18, 9] and detector speed [12, 25], research institutions around the world are rushing to develop
hundreds of ptychographic microscopes to help scientists understand ever more complex nano-materials,
self-assembled devices, or to study different length-scales involved in life, from macro-molecular machines
to bones [24], and whenever observing the whole picture is as important as recovering local atomic
arrangement of the components.

Experimentally, ptychography works by retrofitting a scanning microscope with a parallel detector.
In a scanning microscope, a small beam is focused onto the sample via a lens, and the transmission is
measured in a single- element detector. The image is built up by plotting the transmission as a function
of the sample position as it is rastered across the beam. In such microscope, the resolution of the image is
given by the beam size. In ptychography, one replaces the single element detector with a two-dimensional
array detector such as a CCD and measures the intensity distribution at many scattering angles, much
like a radar detector system for the microscopic world. Each recorded diffraction pattern contains short-
spatial Fourier frequency information [17] about features that are smaller than the beam-size, enabling
higher resolution. At short wavelengths however it is only possible to measure the intensity of the
diffracted light. To reconstruct an image of the object, one needs to retrieve the phase. The phase
retrieval problem is made tractable in ptychography by recording multiple diffraction patterns from the
same region of the object, compensating phase-less information with a redundant set of measurements.
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While reconstruction methods often work well in practice, fundamental mathematical questions con-
cerning their convergence remain unresolved. The reader of an experimental paper is often left to wonder
if the image and the resulting claims are valid, or one possibility among many solutions. Retractions
of experimental results do happen (see [62] for a discussion of controversial results in the optical com-
munity), and the problem is exacerbated because reproducing an image a nanoscale object is often not
practical. What are often referred to as convergence results for projection algorithms are far from what
we need for global convergence [45].

A popular algorithm for solving the phase retrieval problem was proposed in 1972. In their famous
paper, Gerchberg and Saxton [35], independently of previous mathematical results for projections onto
convex sets, proposed a simple algorithm for solving phase retrieval problems in two dimensions. In [44]
the algorithm was recognized as a projection algorithm that involves alternating projections between
measurement space and object space. In 1982 Fienup [32] generalized the Gerchberg-Saxton algorithm
and analyzed many of its properties, showing, in particular, that the directions of the projections in
the generalized Gerchberg-Saxton algorithm are formally similar to directions of steepest descent for a
distance metric. Projection algorithms for convex sets have been well understood since 1960s. The phase
retrieval problem, however, involves nonconvex sets. For this reason, the convergence properties of the
Gerchberg-Saxton algorithm and its variants is still an open question except in very special cases [45].

In this paper, based on the well established phase retrieval paper [2], we demonstrate the global con-
vergence of the alternating projection (AP) algorithm to the unique solution up to a global phase factor,
and apply it to the ptychographic imaging problem. Additionally, we survey the intimate relationship
between the AP algorithm and the notion of phase synchronization, which motivates the application
of the recently developed technique connection graph Laplacian. Phase synchronization and connection
graph Laplacian are applied to quickly construct an accurate initial guess for the alternating projection
algorithm to accelerate convergence speed for large scale diffraction data problems.

The paper is organized as following. In Section 2 we introduce the ptychography experimental setup
and notation. In Section 3 we show the global convergence of AP. In Section 4 we discuss the relation-
ship between the AP algorithm and optimization and show that the second derivative of the associated
objective function is positive close to the solution. In Section 5 we discuss the relationship between
the AP algorithm and the notion of phase synchronization, and propose methods based on connection
graph Laplacian to obtain an accurate initial guess. In Section 6 we show numerical results of proposed
methods, we also propose a new lens design and synchronization strategies that achieve over 40× faster
convergence than the AP algorithm.

2. Background and notations

We start from summarizing notations we use in this paper. Denote R to be the real field, C to be
the complex field and R+ = {x ≥ 0, x ∈ R} to be the set of non-negative real numbers. We will use
the boldface symbol to denote vectors in the column form and non-boldface symbol to denote scalars.

We consider the Hilbert space CL, L ∈ N with the inner product 〈u,w〉 :=
∑L
k=1 u(k)∗w(k), where

u,w ∈ CL, u(i) is the i-th entry of u. We also use the notation ui := u(i) to denote the i-th entry
of u. Also, the complex conjugate u ∈ CL is a column vector with its l-th entry u(l)∗ and w∗ is
the complex conjugate transpose of w, which is a 1 × L row vector. With the inner product, define
‖u‖ :=

√∑m
i=1 |u(i)|2 =

√
u∗u to be the Euclidean norm of u. Let el ∈ CL to be the unit vector with 1

in the l-th entry and 1 to be the vector with 1 in all entries.
Given a function f : C→ C, f(u) is defined as the vector so that its i-th entry is f(u(i)). For example,

the vector 1
u has its i-th entry as 1

u(i) ; |u| is the entry-wise modulation of u, that is, |u| ∈ RL+ and the

j-th entry of |u| is |u(j)|; up, where p ∈ R, is the p-th power of u entriwisely, that is, the i-th entry of up

is just u(i)p. Also, we have an indicator vector for u ∈ CL, denoted as χu ∈ RL, that is, χu(i) = 1 when
u(i) 6= 0 and χu(j) = 0 when u(i) = 0. Given a function g : C× C→ C, g(u,v) is defined as the vector
so that its i-th entry is g(u(i),v(i)), where u,v ∈ CL. For example, the division u

v and production uv

are intended as element-wise operations, that is, the j-th entry of uv (resp. uv) is defined as u(j)
v(j) (resp.

u(j)v(j)). Furthermore, we denote diag(u) to be a diagonal matrix so that its i-th diagonal entry is u(i).
With this notation, we know that uv = diag(u)v when u,v ∈ CL.

Given a matrix A ∈ CL×L′ , where L,L′ ∈ N, we denote AT to be the transpose of A and A∗ to be the

conjugate transpose of A, that is, A∗ = AT . Also we denote Aij to be the (i, j)-th entry of A. For two

matrices A,B ∈ CL×L′ , we define A ◦B to be the Hadamard product, that is, (A ◦B)ij = AijBij . Note
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that if we view u,w ∈ CL as L × 1 matrices, uw in the vector form is actually the Hadamard product
of these two matrices. To express the notation in a compact format, we stack the columns of a complex
matrix A ∈ CL×L′ representing “data” into a complex vector A∨ ∈ CLL′ , where L,L′ ∈ N, where the
superscript ∨ means the vector form, that is, the (l − 1)L + 1-th to the lL-th entries in A∨ is the l-th
column of A, where l = 1, . . . L′.

We will denote T1 to be the unit torus embedded in C, that is, T1 = {eit, t ∈ [0, 2π)}. Given a ∈ Rm+ ,

the notation Ta means the real torus embedded in CL, that is, Ta := {u ∈ CL : u(j) = a(j)eitj , tj ∈
[0, 2π), for all j = 1, . . . , L}. In particular, T1 = ⊗LT1. For R > 0, BR(z0) ⊂ CL is the ball centered at
z0 ∈ CL with radius R, that is, BR(z0) := {z ∈ CL; ‖z − z0‖ ≤ R}. We also define the set of grids with
size L ∈ N and length scale r > 0 as

DL×L := {r(α, β)}L−1
α,β=0.

2.1. The mathematical framework of the ptychography experiment. In a ptychography exper-
iment, an object of interest is illuminated by a coherent beam, and the resulting diffraction pattern
intensity is discretized by a pixellated camera. Numerically, the illuminated portion of the object is
discretized to enable fast numerical methods, such approximation is a valid representation of the physical
experiment when the illumination function is smaller than the maximum bandwidth allowed by detector.
We refer to [51] to situations when these conditions are not strictly satisfied.

For the purpose of this paper, an object of interest is discretized as a n × n matrix and defined as
ψ : Dn×n → C, where n ∈ N. For simplicity here we only consider the square matrix case and a uniform
discretization rate in both axes. A more general setup is possible with a more heavy notation. Take a
two dimensional small beam with known distribution is discretized as a m ×m matrix, where m < n,
denoted as ω. ω is the kernel function associated with the lens we use in the experiment. We can view
the matrix ω as a complex valued function defined on Dm×m so that its value on r(α−1, β−1) is ω(α, β),
where α, β = 1, . . . ,m. Define

Dm×m
ω := {r(α− 1, β − 1) ∈ Dm×m : ω(α, β) 6= 0},

which is the support of ω and similarly the support of ψ, Dn×n
ψ .

In the experiment, we move the lens around the sample, illuminate K > 1 subregions and obtain
K diffraction images. Please see Figure 1 for reference. To express this experimental procedure in
mathematical form, denote ιx to be the embedding of Dm×m onto Dn×n so that the left upper corner
of Dm×m is located in x ∈ Dn×n, that is, ιx(r) = x + r, where r ∈ Dm×m. Also denote F to be the
2D DFT operator, that is, (Ff)(q) =

∑
r e

iq·rf(r) when f ∈ CL×L indexed by r. Then, the chosen
raster points are denoted as xi ∈ Dn×n, where i = 1, . . . ,K. With these raster points, the experimenter
collects a sequence of K diffraction images a(i) of size m×m, i = 1, . . . ,K associated with ψ restricted

to ιxi
(Dm×m) by

a(i)(q) =
∣∣F(ω ◦ ψ(i))(q)

∣∣,
r = r(µ, ν), q =

2π

r
(µ, ν), µ, ν ∈ {0, . . . ,m− 1}.

where ψ(i) : Dm×m → C is the object over the subregion ιxi
(Dm×m) satisfying ψ(i)(r) := ψ(ιxi

(r)) for

all r ∈ Dm×m. We call XK := {xi}Ki=1 the illumination scheme. In this paper, K is assumed to be fixed.
We make the following assumption about the illumination scheme:

Assumption 2.1. The chosen illumination scheme XK satisfies the following two conditions

(1) xi 6= xj for all i 6= j;

(2) XK is ordered so that ∪li=1ιxi(D
m×m
ω ) $ ∪l+1

i=1ιxi(D
m×m
ω ), where l = 1, . . .K−1, ∪K−1

i=1 ιxi(D
m×m
ω ) $

Dn×n and ∪li=1ιxi
(Dm×m

ω ) = Dn×n;
(3) For each i1, there exists i2 so that ιxi1

(Dm×m
ω ) ∩ ιxi2

(Dm×m
ω ) 6= ∅.

The third assumption essentially says that each given pixel x is covered by at least two subregions so
that there is a channel for these subregions “exchange information”.

Build an undirected graph Gψ so that its vertices are points in Dn×n
ψ and an edges is formed if the

pair of vertices, r(i, j), r(i− 1, j) ∈ Dn×n, or r(i, j), r(i, j − 1) ∈ Dn×n, simultaneous exist in Dn×n
ψ , for

all i, j = 1, . . . n− 1. We call ψ connected if Gψ is connected. Suppose this graph is composed of J ≥ 1
connected subgraphs so that the i-th subgraph has vertices Dn×n

ψ,i , where i = 1, . . . , J . Viewing each
subgraph as an object, with a given illumination scheme XK , we build a new graph GXK

on it by taking
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these objects as vertices and putting an edge between Dn×n
ψ,i and Dn×n

ψ,j if there exist xk ∈ XK so that

ιxk
(Dm×m

ω ) ∩ Dn×n
ψ,i 6= ∅ and ιxk

(Dm×m
ω ) ∩ Dn×n

ψ,j 6= ∅. In other words, for two connected components,
there exists an illumination window mounting on them so that the phase information of each connected
component can be exchanged. We call the sample ψ connected with respect to XK if GXK

is connected and
for k ∈ Ij,ψ :=

{
i; ιxi(D

m×m
ω ) ∩Dn×n

j,ψ 6= ∅
}

, these exists l ∈ Ij,ψ so that ιxk
(Dm×m

ω ) ∩ ιxl
(Dm×m

ω ) 6= ∅.
That is, for each connected component Dn×n

ψ,i , each illumination window in Ij,ψ has an overlapping with
some other illumination window in Ij,ψ so that the phase information can be exchanged. Note that if
GXK

is not connected, then we can view the ptychography imaging problem as two or more subproblems,
and solve the problem one by one.

Assumption 2.2. Given XK , the object of interest ψ is connected with respect to XK .

To simplify the notation, we further assume that Dm×m
ω = Dm×m and all discussions in this paper

can be easily adapted to Dm×m
ω $ Dm×m.

To express the experiment in a compact format, the unknown object ψ ∈ Cn×n is also represented

as a complex vector ψ∨ ∈ Cn2

. To take care of the relation between the indices of the matrix form and
vector form, for L > 0, we define the bijective maps rL : rZ2

L → ZL2 and qn : 2π
r Z2

L → ZL2 as

rL : r(α, β) 7→ αL+ β + 1

qL :
2π

r
(α, β) 7→ αL+ β + 1,

where α, β = 0, . . . , L− 1. In other words, the mapping rL is used to convert the index when we rewrite
the spatial data, and qL is used to convert the index when we work with the data in the Fourier domain.
For example, for r = r(µ, ν), rm(r) = µm+ ν + 1, ψ∨(l) = ψ(r−1

n (l)).

Define the illumination operator Q(i) : Cn2 → Cm2

associated with the raster point xi as

Q(i)ψ
∨ := (w ◦ ψ(i))

∨ =: z(i) ∈ Cm
2

.

To a bit abuse the notation, in the following we use the same notation a(i) := |z(i)| ∈ Rm2

+ .
To express Q(i) is the matrix form, we need the following definitions. Define the restriction matrix

R, which is of size m2 × n2 so that R(i, i) = 1 for all i = 1, . . . ,m2 and 0 otherwise. Also define the
translation matrix Tx which circularly translates x ∈ Dn×n to r(0, 0) ∈ Dn×n. Thus, we have

Q(i) = diag(w∨)RTxi
∈ Cm

2×n2

.(1)

With these notations, the relationship between the diffraction measurements collected in a ptychogra-
phy experiment and ψ can be represented compactly as

a = |Fz|, z = Qψ∨,(2)

or a = |FQψ∨|, where

a :=

 a(1)

...
a(K)

 ∈ RKm
2

, F :=

 F . . . 0
...

...
...

0 . . . F

 ∈ CKm
2×Km2

z :=

 z(1)

...
z(K)

 ∈ CKm
2

, Q :=

 Q(1)

...
Q(K)

 ∈ CKm
2×n2

,

where F is the associated 2D DFT matrix when we write everything in the stacked form, that is, F

is a m2 ×m2 matrix satisfying Flk = eTl Fek = eiq
−1
m (l−1)·r−1

m (k−1). The objective of the ptychographic
reconstruction problem is to find ψ given a and the form (2).

3. The alternating projection algorithm and its global convergence

In this section, we study the convergence of the alternating projection (AP) algorithm. In general,
given an object ψ0 ∈ CN and a frame {fi}Mi=1 ⊂ CN so that M ≥ N . Denote S to be a M ×N matrix
with the i-th row is f∗i . The phase retrieval problem we might ask in this setup is the following. Given

a = |Sψ0|,



AP+PTYCHOGRAPHY+PS 5

x1

x2

x3

 (r)

r2

r1

q1

q2

!(r)

a(1)(q)

a(K)(q)
. . .

Figure 1. Experimental geometry in ptychography: an unknown sample with trans-
mission ψ(r) is rastered through an illuminating beam ω(r), and a sequence of diffrac-
tion measurements |a(i)|2 are recorded on an area detector as the sample is rastered
around. The point-wise product between illuminating function and sample, z(i)(r) :=
ω(r)ψ(r + xi), is related to the measurement by a Fourier magnitude relationship
a(i) =

∣∣Fz(i)

∣∣.
is it possible to recover ψ0 from a? Note that we have two pieces of information about the phase retrieval
problem – the solution has the amplitude a and is located on the range of S, which is denoted as RS.
That is, the solution Sψ0 exists in Ta ∩RS. Thus, a popular approach to solve the ptychography problem
by finding a vector z̃ ∈ CM such that{

‖(I − PS)z̃‖ = 0
‖(I − Pa)z̃‖ = ‖|z̃| − a‖ = 0

(3)

are both satisfied, where PS : CM → CM , referred to as the phase correction operator, projects a complex
vector to RS, that is,

PS := S(S∗S)−1S∗ ∈ CM×M ,

and Pa : CM → CM , referred to as the amplitude correction operator, is

Paz = a
z

|z|
χz + a(1− χz).

Note that (S∗S)−1 exists by the assumption of S and Pa substitutes the amplitude of z(j) by a(j) and
preserve the phase information. Once we find the optimal solution, the object of interest ψ0 is estimated
by

ψ̃0 := (S∗S)−1S∗z̃ ∈ CN .

We start from recalling the commonly applied AP algorithm aiming to solve (3), and then we show
the convergence of the AP algorithm to the unique solution under some proper conditions. In the AP
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algorithm, the optimization problem (3) is tackled by the following iterative scheme

ζ(`+1/2) := Paζ
(l), ζ(`+1) = PSζ

(`+1/2).

It is easy to verify that |ζ(`+1/2)| = a for all ` ∈ N and Pa is a projection onto Ta in the sense that

Paζ = argmin
ζ̄∈Ta

‖ζ̄ − ζ‖.(4)

This optimization step is non-linear in nature. Indeed, the constrained space we are searching for the
ζ̄ ∈ CM closest to ζ is characterized by its Fourier amplitude. Note that at the first glance, Pa behaves
like a dilation operator in CM ; however, since the dilation might be different from entry to entry, it is
nonlinear in nature. On the other hand, PS linearly projects ζ(`+1/2) to the range of S, denoted as RS.
The algorithm can be illustrated in Figure 2.

Figure 2. The summary of the Lemma 3.7. The lengths of the black dashed arrows
associated with Pa decrease during the iteration and the lengths of the blue dashed
arrows associated with PS decrease, too. However, ‖ζ(l) − ζ(l−1)‖ may not decrease. RS

is illustrated as a curve to emphasize the nonlinear nature of the Pa map.

The main purpose of the AP algorithm is finding the solution Sψ0, which is located on the set RS∩Ta.
In order to characterize this set, we introduce some notations and quote the theorems from [2]. Note that
for the frame S, we have the following mapping:

MS : CN → CM , MS(z) = Sz,

where z ∈ CN . We thus can view the range of the MS as a complex N -dimensional subspace of CM . Thus,
from the frame theory view point [2], S determines a point of the fiber bundle F[N,M ;C], whose base
manifold is the complex Grassmannian manifold Gr(N,M ;C) with fiber GL(N,C). The phase retrieval
problem is directly related to the following nonlinear map:

MS
a : CN/T1 → CM , MS

a(z) = |MS(z)| =
M∑
k=1

|f∗kz|ek,(5)

where z ∈ CN and the subscript a means taking the absolute value. That is, we only have the amplitude
information of the coordinates of the signal z with related to the frame but the phase information is lost.

In the following, by generic we mean that there is a Zariski open set in the real algebraic variety
Gr(N,M,C) so that the result holds for all frames of the associated linear subspace. Note that we only
discuss the genericity of Gr(N,M ;C) since the following proposition
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Proposition 3.1 (the complex version of Proposition 2.1 [2]). For any two frames S and S̃ that have the

same range of coefficients, MS
a is injective if and only if MS̃

a is injective.

The main theorem in [2] we count on is the following.

Theorem 3.2 (Theorem 3.3 [2]). If M ≥ 4N − 2, then MS
a is injective for a generic frame S.

In conclusion, we know that generically the solution to the phase retrival problem is unique when
M ≥ 4N − 2, and thus solving the problem is possible. As useful as the Theorems, however, they do
not answer the practical question – how does the phase optimization algorithm lead to the solution? In
particular, the operator (MS

a)−1 is unclear to us. In this section, we analyze the convergence behavior of
the AP algorithm, which leads to (MS

a)−1. We mention that the uniqueness result of the phase retrieval
problem in a different setup, in particular, when the signal of interest is real-valued with dimension higher
than 2 and the frame is the oversampling Fourier transform, has been reported in [13, 6, 39, 58]. In such
set-up, the set of non-unique solutions is of measure zero. However, such structures do exist in nature
[55].

Notice that while the operator MS
a is defined on CN/T1, where the global constant phase difference

is moduled out, the inverse (MS
a)−1 does not distinguish between the global constant phase difference.

Thus, when M ≥ 4N − 2 and RS generic, given ψ0 ∈ CN and a = |Sψ0|, we define the solution set as

Sa := {eitSψ0 : t ∈ [0, 2π)} = RS ∩ Ta
∼= T1,

where the second equality holds due to the above Theorem.
Before proceeding, we have some immediate consequences of the Theorem.

Lemma 3.3. When M ≥ 4N−2 and RS generic, for all z,w ∈ RS and z 6= cw for c ∈ T1, then |z| 6= |w|.
Moreover, not all Ta, where a ∈ RM+ , intersects RS.

Proof. The first claim is immediate from Theorem 3.2. Note that when RS and Ta intersect, it means
that a comes from MS

a. Also note that the mapping MS
a : CN → RM+ can be viewed as an embedding of

CN into CM followed by a nonlinear mapping from RS to RM+ . Here the nonlinear mapping is 1-1 when

M ≥ 4N − 2 by Theorem 3.2. By counting the dimension, we know that the mapping MS
a can not be

onto, and hence the first claim is proved. �

We conclude from this Lemma that for z ∈ RS with b = |z|, there exists a unique phase φb ∈ T1 so

that z = bei(t+φ
b) for some t ∈ [0, 2π). Here the subscript b in φb indicates the dependence of the phase

on the amplitude b. We mention that if we replace the conditions in Lemma 3.3, we have the following
corresponding result.

Lemma 3.4. When M ≥ 4N − 2 and RS generic, for all z,w ∈ RS and z 6= rw for r ∈ R1, then z 6= cw
for any c ∈ T1.

Proof. This also comes from Theorem 3.1. The only difference is interchanging T1 and R1 in the proof
of Theorem 3.1 and note that they both have real dimension 1. �

To show the convergence result, we start from introducing the following stagnation set (or the fixed
points) of the AP algorithm when the given data is a:

ΘAP
a := {ζ ∈ RS : PSPaζ = ζ} ⊂ RS ∩B‖a‖(0).(6)

Note that ΘAP
a is a subset of B‖a‖(0) simply because PS is a projection operator. Please see Figure 3 for

illustration.
We can compare the definition of the stagnation set with the solution set of the phase retrieval problem.

Clearly the solution set Sa ⊂ ΘAP
a . The stagnation set reflects the fact that Paζ − ζ 6= 0 does not imply

ζ 6= PSPaζ, that is, when ζ = PSPaζ, ζ may or may not be the solution. We have the following
quantification of the stagnation set, which says that when M ≥ 4N − 2, the stagnation set is precisely
the solution set Sa.

Theorem 3.5. ΘAP
a = RS ∩ Ta. In particular, when M ≥ 4N − 2 and RS generic, ΘAP

a = Sa.

Proof. We first claim that I − Pa is onto. For any given ζ ∈ CM we are able to define η ∈ CM so that

η(k) =

{
(|ζ(k)|+ a(k)) ζ(k)

|ζ(k)| when ζ(k) 6= 0

a(k)u when ζ(k) = 0
,
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Figure 3. The stagnation set ΘAP
a . Ta is illustrated as a curve to emphasize the non-

linear nature of the Pa map.

where u is randomly chosen from T1. By this definition, we know η − Paη = ζ and hence I − Pa is onto.
Note that when there is an entry 0 in ζ, I − Pa is not one-to-one, and the more entries of ζ are zero, the
larger the dimension of the set (I − Pa)

−1ζ is. Next, we claim that when all entries of ζ are non-zero,
(I − Pa)

−1(ζ) is a point, that is, I − Pa is one to one on the set {(I − Pa)
−1(ζ); ζ(i) 6= 0, i = 1, . . . ,M}.

Suppose η1 6= η2 so that ζ = (I − Pa)η1 = (I − Pa)η2. Since I − Pa operator acts on CM entry-wisely,

we may focus on the k-th entry so that η1(k) 6= η2(k). Then, since (|η1(k)| − a(k)) η1(k)
|η1(k)| 6= 0, we clearly

have (|η1(k)| − a(k)) η1(k)
|η1(k)| 6= (|η2(k)| − a(k)) η2(k)

|η2(k)| , which is absurd. Indeed, since η1(k) 6= η2(k), we

know either |η1(k)| − a(k) 6= |η2(k)| − a(k) or η1(k)
|η1(k)| 6=

η2(k)
|η2(k)| . The claim is thus proved.

It is clear that RS ∩Ta ⊂ ΘAP
a since for all z ∈ RS ∩Ta, z = PSPaz. We now prove the other direction

by contradiction. Suppose η ∈ ΘAP
a is located on RS but not on Ta. Then, denote ζ := η − Paη, which

is non-zero by the assumption. Thus, when all entries of ζ are non-zero, η∗(η − Paη) = 0 implies that∑M
k=1(|ζ(k)| + a(k))|ζ(k)| = 0, which is only possible if ζ(k) = 0 for all k. However, we know that by

assumption ζ 6= 0, so it is absurd. Similarly, when there are some 0 entries in ζ, say, ζ(k) = 0, then
the k-th entry does not play a role in η∗(η − Paη) = 0, while the non-zero entries in ζ leads to the same
contradiction. �

We emphasize that this Theorem does not imply the convergence of the AP algorithm since there
might be other kinds of stagnation in the alternating algorithm. We need more to show the convergence
of the AP algorithm.

Lemma 3.6. (a) For ζ 6= 0 and w ∈ Ta, we have

‖Paζ − ζ‖ ≤ ‖w − ζ‖,

where the equality holds when w = Paζ.
(b) For w ∈ Ta and z ∈ RS, we have

‖PSw − w‖ ≤ ‖z − w‖,

where the equality holds when z = PSw.
(c) For all nonzero ζ ∈ RS, Paζ is not perpendicular to RS.
(d) When M ≥ 4N − 2 and RS generic, given ζ ∈ RS, Paζ ∈ RS holds if and only if ζ ∈ Sa.
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(e) All possible initial values ζ(0) with non-zero entries can be parametrized by a (2N − 1)-dim real
sphere embedded in RS. In particular, given z ∈ RS so that all entries are not zero and rz /∈ Sa

for all r ∈ R+, the phase of z is different from the phase of all w ∈ Sa.

Proof. To prove (a), denote ζ = (bie
iθi)Mi=1 ∈ CM and w = (aie

iφi)Mi=1 ∈ CM , where bi ≥ 0 and

θi, φi ∈ [0, 2π). Then by definition Paζ = (aie
iθi)Mi=1. Thus, ‖Paζ − ζ‖ =

√∑
|ai − bi|2 and ‖w − ζ‖ =√∑

|ai − biei(θi−φi)|2, which leads to the result since |ai− bi| < |ai− biei(θi−φi)|. Note that the equality
holds when θi = φi for all i.

The proof of (b) is directly from the fact the PS is a projection operator.
For (c), denote ζ = (bie

iθi)Mi=1 ∈ RS, where bi ∈ R+ and θi ∈ [0, 2π). Then by definition Paζ =
(aie

iθi)Mi=1. Then it is clear that 〈Paζ, ζ〉 > 0, which shows the claim.
The statement (d) is direct from Theorem 3.2.
The show the statement (e), note that RS can be viewed as a real vector space of dimension 2N . If

z, w ∈ RS so that w = rz, where r ∈ R+, by definition we have Paz = Paw. In other words, each “real
positive ray” is associated with an initial value. For the other part, if the phase of z is the same as
the phase of w ∈ Sa, we know Paz = w, which means that there exists r > 0 so that rz = w, which is
absurd. �

Lemma 3.7. The following bounds hold:

‖(Pa − I)ζ(l)‖ ≤ ‖(Pa − I)ζ(l−1)‖

‖(PS − I)ζ(l+1/2)‖ ≤ ‖(PS − I)ζ(l−1/2)‖.

When M ≥ 4N − 2 and ζ(0) /∈ ΘAP
a and RS generic, there exist αl < 1 and βl < 1, l ∈ N so that

‖(Pa − I)ζ(l)‖ = αl‖(Pa − I)ζ(l−1)‖(7)

‖(PS − I)ζ(l+1/2)‖ = βl‖(PS − I)ζ(l−1/2)‖.(8)

Here {αl, βl} depend on ζ(1), S and a. Moreover, if we denote ζ(l) = (b
(l)
k e

iφ
(l)
k )Mk=1, where b

(l)
k ∈ R+ and

φ
(l)
k ∈ [0, 2π), the following inequality holds:

2

M∑
k=1

akb
(l)
k

(
1− cos(φ

(l)
k − φ

(l−1)
k )

)
<

M∑
k=1

(ak − b(l−1)
k )2 −

M∑
k=1

(ak − b(l)k )2,(9)

Proof. Based on Lemma 3.6, we have the following inequalities. First,

‖Paζ
(l) − ζ(l)‖ ≤ ‖Paζ

(l−1) − ζ(l)‖ = ‖Paζ
(l−1) − PSPaζ

(l−1)‖

due to Lemma 3.6 (a). Note that when M ≥ 4N − 2, the equality can not hold since ζ(l) 6= ζ(l−1) due to
Theorem 3.5. Then, by Lemma 3.6 (b), we have

‖Paζ
(l−1) − PSPaζ

(l−1)‖ ≤ ‖Paζ
(l−1) − ζ(l−1)‖.

Again, when M ≥ 4N − 2, the equality can not hold since ζ(l−1) /∈ ΘAP
a due to Theorem 3.5. Similarly,

by Lemma 3.6 (a), the following inequality holds

‖Paζ
(l−1) − ζ(l−1)‖ ≤ ‖Paζ

(l−2) − ζ(l−1)‖ = ‖ζ(l−3/2) − PSζ
(l−3/2)‖.

By iteratively evaluating the above equality, we have (7). Now, since ζ(l) = (b
(l)
k e

iφ
(l)
k )Mk=1, we have

‖Paζ
(l−1) − PSPaζ

(l−1)‖2 =

M∑
k=1

|ak − b(l)k e
i(φ

(l)
k −φ

(l−1)
k )|2

=

M∑
k=1

(ak − b(l)k )2 + 2

M∑
k=1

akb
(l)
k

(
1− cos(φ

(l)
k − φ

(l−1)
k )

)
and

‖Paζ
(l−1) − ζ(l−1)‖2 =

M∑
k=1

|ak − b(l−1)
k |2.
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Thus, we have

2

M∑
k=1

akb
(l)
k

(
1− cos(φ

(l)
k − φ

(l−1)
k )

)
<

M∑
k=1

(ak − b(l−1)
k )2 −

M∑
k=1

(ak − b(l)k )2,

and hence the proof is done. �

Note that (7) and (8) does not imply

‖ζ(l+1) − ζ(l)‖ ≤ ‖ζ(l) − ζ(l−1)‖.

Indeed, note that Paζ
(l) − ζ(l+1) is perpendicular to ζ(l+1) − ζ(l). Thus we have

‖(Pa − I)ζ(l)‖2 = ‖ζ(l+1) − ζ(l)‖2 + ‖(PS − I)Paζ
(l)‖2

‖(Pa − I)ζ(l−1)‖2 = ‖ζ(l) − ζ(l−1)‖2 + ‖(PS − I)Paζ
(l−1)‖2,

(10)

where when (7) and (8) hold, it is still possible that ‖(PSPa − I)ζ(l)‖ > ‖(PSPa − I)ζ(l−1)‖. Please see
the numerical section for an example.

Lemma 3.8. When M ≥ 4N − 2 and RS generic, the following conditions are equivalent

(1) AP algorithm converges to the solution;
(2) ‖(Pa − I)ζ(l)‖ → 0;
(3) ‖(PS − I)ζ(l+1/2)‖ → 0;
(4) ‖ζ(l+1) − ζ(l)‖ → 0.

Proof. When M ≥ 4N − 2, (1) and (4) are equivalent by Theorem 3.5. When (1) holds, it is clear that
(2) and (3) hold. On the other hand, note that when ‖(Pa − I)ζ(l)‖ → 0, we have ‖ζ(l+1) − ζ(l)‖ → 0
and ‖(PS − I)Paζ

(l)‖ → 0 by (10). That is, (2) implies (3) and (4). Finally, since PSζ
(l+1/2) ∈ RS, (3)

means ζ(l+1/2) ∈ Pa converges to a point located on RS ∩ Ta, that is, ζ(l+1/2) converges to the solution
set. Hence we have the fact that (3) implies (1). �

Thus, to study the convergence behavior of the AP algorithm, we may focus on the convergence
behavior of ‖(Pa − I)ζ(l)‖. We are now ready to show our main theorem – when M ≥ 4N − 2, the AP
algorithm converges to the solution.

Theorem 3.9. When M ≥ 4N − 2 and RS generic, the AP algorithm converges to the solution set.

Proof. We will assume that ζ(0) /∈ Sa. By Lemma 3.7, we know that αl and βl are both less than 1 unless
the AP algorithm converges to the solution set in finite steps. So we suppose αl < 1 and βl < 1 for all
l ∈ N. We show the proof by considering the following different situations.

It is clear that if lim supl→∞ αl < 1, then the AP algorithm converges linearly globally. Indeed, since
there exists l0 ∈ N and α < 1 so that αl ≤ α when l > l0, we have

‖Paζ
(l) − ζ(l)‖ ≤ αl−l0‖Paζ

(l0) − ζ(l0)‖ → 0.

Note that in this case, Π∞l=1βl is forced to diverge to 0 by (10).
If lim supl→∞ αl = 1 so we can not find α < 1, there are two possibilities. First, suppose lim inf l→∞ αl ≤

1−ε for some ε > 0, then there exists a subsequence of αl, denoted as αlk , where k ∈ N, so that αlk ≤ 1−ε.
In this case, we still have

‖Paζ
(l) − ζ(l)‖ → 0

and hence the convergence.
Second, suppose lim inf l→∞ αl = 1, that is, liml→∞ αl = 1. Clearly the series pn := Πn

l=1αl converges
as n→∞ since αl < 1. If the infinite product Π∞l=1αl diverges to 0, the AP algorithm converges to the
solution, but at a slow rate. However, Π∞l=1αl may not diverge to 0 since Π∞l=1αl converges if and only if
the series

∑∞
l=1(1− αl) converges.

We now show that in the AP algorithm, Π∞l=1αl will diverge to 0. If
∑∞
l=1(1− αl) converges, that is,

0 < p∞ = Π∞l=1αl < 1, we have

‖Paζ
(l) − ζ(l)‖ → p∞‖Paζ

(1) − ζ(1)‖ =: p(ζ(1)) > 0,(11)

as l → ∞, that is, the AP algorithm will not converge by Lemma 3.8. In this case, Π∞l=1βl = q∞ > 0
must hold by Lemma 3.8, and we have

‖(PFQ − I)Paζ
(l)‖ → q∞‖(PFQ − I)Paζ

(1)‖ =: q(ζ(1)) > 0,(12)
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and hence

lim
l→∞

‖ζ(l+1) − ζ(l)‖2 = p2(ζ(1))− q2(ζ(1)) > 0.

Denote ζ(l) = (b
(l)
k e

iφ
(l)
k )Mk=1. By assumption, (9) and (11) we have:

0 ≤ 2

M∑
k=1

akb
(l)
k

(
1− cos(φ

(l)
k − φ

(l−1)
k )

)
<

M∑
k=1

(ak − b(l−1)
k )2 −

M∑
k=1

(ak − b(l)k )2 → 0

as l → ∞ since
∑M
k=1(ak − b(l−1)

k )2 = ‖Paζ
(l−1) − ζ(l−1)‖2 → p(ζ(1))2 and

∑M
k=1(ak − b(l)k )2 = ‖Paζ

(l) −
ζ(l)‖2 → p(ζ(1))2. On the other hand, by (12) we know

q(ζ(1))2 = lim
l→∞

‖(PFQ − I)Paζ
(l)‖2 = lim

l→∞

M∑
k=1

|ak − b(l+1)
k ei(φ

(l+1)
k −φ(l)

k )|2

= lim
l→∞

M∑
k=1

(ak − b(l+1)
k )2 + lim

l→∞
2

M∑
k=1

akb
(l+1)
k

(
1− cos(φ

(l+1)
k − φ(l)

k )
)

= p(ζ(1))2.

As a result, we have

lim
l→∞

‖ζ(l+1) − ζ(l)‖2 = 0,

which contradicts Lemma 3.8. Thus, the AP algorithm converges to the solution set as is claimed. �

Note that although the AP algorithm converges, it might converge very slowly, as is shown above.

Remark (Non-convex optimization framework). We mention that the AP algorithm can be studied in the
non-convex optimization framework [22]. Given a set of subsets Si, i = 1, . . . , L of a metric space X so
that S := ∩Li=1Si 6= ∅. To find S, we may consider the proposed sequence of successive projections (SOSP)
scheme, which successively project the estimator to Si. Under suitable conditions, the convergence of
the SOSP scheme is provided in [22, Theorem 4.3]. Indeed, it says that when the initial value x0 of the
SOSP {xn}n≥0 is a point of attraction [22, Definition 4.4] of an ordered collection of proximial sets in a
metric space whose intersection S is not empty, then either {xn}n≥0 converges to a point in S or the set
of the cluster points of {xn}n≥0 is a nontrivial continuum in S.

Note that in our AP algorithm setup, the metric space X is a finite dimensional Hilbert space CM , S1

is our Ta, and S2 is our RS. By Lemma 3.6, we know that S1 and S2 are Chebychev sets so that the SOSP
is unique. When M ≥ 4N − 2, we consider only the generic frame so that the intersection set S1 ∩S2 is a
compact set Sa diffeomorphic to T1. Although it is claimed in [7] that the AP algorithm locally converges,
the confirmation of the positive attractor radius and that the initial value is a point of attraction needs
to be confirmed. The above argument provides a different approach to show the convergence property of
the AP algorithm under the non-convex optimization framework when M ≥ 4N − 2.

4. The Relationship between the AP Algorithm and Optimization

To better understand the AP algorithm, we assume M ≥ 4N − 2 in this section. Define an objective
function [69]

ρ(z) :=
1

2
‖|z| − a‖2 :=

1

2
r(z)T r(z),

where z = (z1, . . . , zM )T ∈ CM , r : CM → RM is defined by

r(z) := |z| − a.

Note that we take the transpose since r(z) is a real vector. The objective function ρ, when restricted
on RFQ, gauges how far we are to the solution. Recall that the solution, or the right phase, are located
on RFQ. To evaluate the gradient and Hessian of ρ, we prepare the following calculations [42]. First, we
evaluate the derivative of r(z) with respect to z at z:

∂r

∂z
|z =

∂|z|
∂z
|z =

∂

∂z

 |z1|
...
|zM |

 =


∂|z1|
∂z1

0

. . .

0 ∂|zM |
∂zM

 =
1

2
diag

z∗

|z|
,
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where we use the fact that
∂|w|
∂w

=
w∗

2|w|
when w ∈ C. Similarly, we evaluate the derivative of r(z) with

respect to z at z:

∂r

∂z
|z =

1

2
diag

z

|z|
.

Thus, by the chain rule we obtain the derivative of ρ(z) with respect to z and z at z:

∂ρ

∂z
|z =

1

2

(
∂r

∂z
|z
)T

r(z) +
1

2
r(z)T

∂r

∂z
|z = r(z)T

∂r

∂z
|z =

1

2
(I − Pa)z

∗(13)

∂ρ

∂z
|z =

1

2

(
∂r

∂z
|z
)T

r(z) +
1

2
r(z)T

∂r

∂z
|z = r(z)T

∂r

∂z
|z =

1

2
(I − Pa)z,(14)

Next we evaluate the following quantities evaluated at z:

Hzz :=
∂

∂z
|z
(
∂ρ

∂z

)∗
Hzz :=

∂

∂z
|z
(
∂ρ

∂z

)∗
(15)

Hzz :=
∂

∂z
|z
(
∂ρ

∂z

)∗
Hzz :=

∂

∂z
|z
(
∂ρ

∂z

)∗
.(16)

Clearly, by (13) we have

Hzz =
1

2

(
I − ∂

∂z
|zPaz

)
=

1

2
I − 1

2

∂

∂z


a1

z∗1
|z1|
...

aM
z∗M
|zM |



=
1

2
I − 1

2


a1

∂
∂z1
|z1(

z∗1
|z1| ) 0

. . .

0 aM
∂

∂zM
|zM (

z∗M
|zM | )


=

1

2

(
I − 1

2
diag

a

|z|

)
,

where we use the fact that
∂

∂w
|z
(w∗
|w|

)
=

1

2|w|
, where w ∈ C. Similarly we have

Hzz =
1

2

(
I − 1

2
diag

a

|z|

)
.

By (14) we have

Hzz =
1

2

∂

∂z
|zPaz =

1

4
diag

(
az∗2

|z|3

)
.

With the above preparations, we can evaluate the gradient and Hessian of ρ at z. Denote z = (cie
iφi)Mi=1 ∈

CM , where ci ∈ R+ and φi ∈ [0, 2π). By definition, the gradient of ρ at z is the dual vector of ∂
∂z |zρ

associated with the canonical metric on CM , that is,

∇ρ|z :=

(
∂

∂z
|zρ
)∗

=
1

2
(I − Pa)z =

1

2
[(cl − al)eiφl ]Ml=1.(17)

The Hessian of ρ at z, denoted by ∇2ρ|z, by a direct calculation is given by

∇2ρ|z :=

(
Hzz Hzz
Hzz Hzz

)
,

which leads to the following evaluation of the curvature of the ρ. Take w ∈ CM . Denote w = (bie
iθi)Mi=1,

where bi ∈ R+ and θi ∈ [0, 2π). Then by a direct expansion, the second derivative of ρ in the direction
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w at z is

∇2ρ|z(w) := (w∗ w∗)∇2ρ|z
(
w
w

)

= (w∗ w∗)


1

2
w − 1

4

a

|z|
w +

1

4

az2

|z|3
w

1

2
w − 1

4

a

|z|
w +

1

4

az∗2

|z|3
w


=

M∑
j=1

b2j

(
1− aj

cj
sin2(θj − φj)

)
.(18)

We have the following observations about the gradient and Hessian:

• Note that we can view the AP algorithm as the projected gradient descent algorithm related to
the objective function ρ [68]. Indeed, we have

ζ(l+1) = ζ(l) − 2PS∇ρ|ζ(l) = PSPaζ
(l).

By (17), for z = ζ(l) = b(l)eiφ
(l)

we have

∇ρ|ζ(l) =
1

2

[
(b

(l)
k − ak)eiφ

(l)
k

]M
k=1

.

By Lemma 3.3, for a generic RS, the gradient of ρ on RS is zero only at Sa since the only points on
RS that have modulations a is the solution set. Also, by Theorem 3.5, ∇ρ|ζ(l) is not perpendicular
to RS, that is, PS∇ρ|ζ(l) is nonzero outside Sa. Furthermore, ∇ρ|ζ(l) is not located on RS since

b(l) and a are not related by a constant factor and we know that φ(l) is related to b(l) but not
b(l) − a.

• For z = eitSψ0 = aei(φ
a+t) ∈ Sa, where t ∈ [0, 2π), and w = beiθ, by (18) we know

∇2ρ|z(w) =

M∑
j=1

b2j
(
1− sin2(θj − φaj − t)

)
,

which is always non-negative since sin2 ≤ 1. When θ = φa + t+ π/2, ∇2ρ|Sψ0
(w) = 0. However,

by Lemma 3.3, for a generic RS, we know that if b 6= a and w ∈ RS, then θ 6= φa + t′ for all
t′ ∈ [0, 2π). In particular, ∇2ρ|z(w) is strictly positive when w is in a small enough ball around
the origin.

5. The ptychographic imaging problem and phase synchronization

In this section, we focus ourselves on the ptychography problem. Given a = |FQψ|, we combine the
essences of the AP algorithm and consider the following optimization problem:

argmin
ζ∈T1

‖(I − PFQ)aζ‖2.(19)

It is clear that the phase of eitFQψ, where t ∈ T1 is a solution to (19). Note that under the constraint
of ζ, ζ∗diag(a)2ζ = ‖a‖22 is fixed. So, solving (19) is equivalent to solving

argmax
ζ∈Ta

ζ∗PFQζ,(20)

where PFQ is clearly a Hermitian matrix. Intuitively, (20) says that the phases of Fourier modes associated
with diffraction images should be related via the operator PFQ. However, the constraint regarding Ta

drives the optimization problem into a non-convex one.
The first possible relaxation is taking into account the fact that Ta is a subset of the sphere of radius

‖a‖, that is, we directly evaluate

argmax
ζ∈CKm2

, ζ∗ζ=‖a‖22

ζ∗PFQζ,(21)

which is equivalent to solving the eigenvalue problem of PFQ. Clearly, the solution exists as an eigenvector
with eigenvalue 1. However, since PFQ is a projection operator, the only eigenvalues are 0 and 1. Thus,
although the solution exists in the top eigenspace, we cannot obtain it directly by solving (21).
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Before proceeding, we study the geometric meaning of (20) a bit more. Define an index map ` :
XK ×Dm×m → {1, . . . ,Km2} by

`(xk, rk) = (k − 1)m2 + rm(rk),

which is a 1 to 1 map providing the index of the entry rk of the k-th illumination window ιxk
(Dm×m) in

the long stack vector. For j = 1, . . . ,K and s ∈ Dm×m, define a set

Ixj ,s := {k : xj + s ∈ ιxk
(Dm×m)} ⊂ {1, . . . ,K},

which contains the indices of all illumination windows covering xj + s. Also define a subset of Dm×m

Jxj ,s := {r ∈ Dm×m : xk + r = xj + s, k ∈ Ixj ,s},

which collects the indices of the pixels in all illumination windows which cover xj + s. We choose
to use this seeming complicated index since we would like to make clear the relationship between the
illumination windows and their pixels. By Assumption 2.1 and a direct calculation, we know that Q∗Q is
a n2×n2 non-degenerate diagonal matrix describing how many illumination windows cover a given pixel
of the object of interest, where the rn(xj + rj)-th diagonal entry is

∑
r∈Jxj ,rj

|ω(r)|2. So, the matrix

PQ := Q(Q∗Q)−1Q∗ satisfies

PQ(`(xi, ri), `(xj , rj)) =
ω(ri)ω

∗(rj)∑
r∈Jxj ,rj

|ω(r)|2
δxi+ri,xj+rj ,

where δ is the Kronecker’s delta. Note that PQ is not a diagonal matrix since by Assumption 2.1 there

are more than two illumination windows covering a given pixel. Clearly, for all xi ∈ XK , and ζ ∈ CKm2

,
we have

[
F∗ζ
]
(i)

= F ∗ζ(i), where ζ(i)(r) := ζ(xi + r) and r ∈ Dm×m. Also, PFQ = FPQF
∗. As result,

ζ∗PFQζ =
∑
i,ri

∑
j,rj

ω(ri)ω
∗(rj)∑

r∈Jxj ,rj
|ω(r)|2

[
F ∗ζ(i)

]∗
(ri)

[
F ∗ζ(j)

]
(rj)δxi+ri,xj+rj

=
∑

(i,ri)∼(j,rj)

ω(ri)ω
∗(rj)∑

r∈Jxj ,rj
|ω(r)|2

[
F ∗ζ(i)

]∗
(ri)

[
F ∗ζ(j)

]
(rj),

where (i, ri) ∼ (j, rj) means all illumination windows covering the pixel ιxi
(ri). Geometrically, PQ

describes how two illumination windows in the spatial domain are intersected and how the overlapped
pixels are related via the illuminating function ω. Note that when ζ(i) contains the right amplitude and

phase, F ∗ζ(i) is the correct image on ιxi
(Dm×m). Thus, maximizing ζ∗PFQζ is equivalent to requiring

that the images on a pair of overlapping illumination windows match in the overlapping region. In
particular, by Assumption 2.1, phases on one illumination window will be synchronized with at least one
different illumination window if we maximize ζ∗PFQζ. Also, by Assumption 2.2, the phases in different
disconnected regions of ψ associated with XK are guaranteed to interact with each other so that the
phase can be synchronized in the end.

To better understand PFQ, we further consider the relationship between the phases when the illumi-
nation windows overlap. Consider the following phase synchronization problem:

argmax
ζ∈T1

ζ∗PFQζ.(22)

To study this non-convex optimization problem, we start from studying the Hermitian matrix PFQ in (22).
The amplitude information a will be taken into account later. Denote Oij := ιxi(D

m×m) ∩ ιxj (Dm×m)
to be the overlap of two illumination windows. By the definition (1), a direct expansion of (22) leads to

ζ∗PFQζ = ζ∗FQ(Q∗Q)−1Q∗F∗ζ

=

K∑
i,j=1

ζ∗(i)Fdiag(w)RTxi
(Q∗Q)−1T∗xj

R∗diag(w∗)F ∗ζ(j)

=
∑

i,j:Oij 6=∅

ζ∗(i)Fdiag(w)RTxi
(Q∗Q)−1T∗xi

T∆xixj
R∗diag(w∗)F ∗ζ(j),

where ∆xixj
:= xi−xj and the last equality comes from the fact that Txi

T∗xj
= T∆xixj

and T∗xi
Txi

= I.

Clearly if Oij = ∅, T∆xixj
R∗ is a zero matrix. Note that Txi

(Q∗Q)−1T∗xi
, as the conjugation of (Q∗Q)−1
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by Txi
, is diagonal. It actually translates the rn(xi)-th diagonal entry to the 1-st diagonal entry. Also note

that the overlapping information about the i-th and j-th illumination windows is preserved in T∆xixj
R∗.

Now we move T∆xixj
out of Fdiag(w)RTxi(Q

∗Q)−1T∗xi
T∆xixj

R∗diag(w∗)F ∗ by a direct expansion:

Fdiag(w)RTxi
(Q∗Q)−1T∗xi

T∆xixj
R∗diag(w∗)F ∗

=FM∆xixjF ∗diag([e−iq
−1
m (1)·∆xixj , . . . , e−iq

−1
m (m2)·∆xixj ]),

where M∆xixj is a m2 ×m2 masking matrix which is diagonal and depends on ∆xixj :

eTrm(s)M
∆xixj erm(s) :=

{
ω(s)ω∗(s−∆xixj

)∑
r∈Jxi,s

|ω(r)|2 when s ∈ Dij

0 otherwise,

and Dij := ιr(0,0)D
m×m ∩ [T∆xixj

ιr(0,0)D
m×m]. This equality indicates the influence of the restriction

matrix R – the non-overlapped parts of the two overlapping subregions cannot be eliminated. Next, for

ri, rj ∈ Dm×m, when Oij 6= ∅, them2×m2 matrix FM∆xixjF ∗diag([e−iq
−1
m (1)·∆xixj , . . . , e−iq

−1
m (m2)·∆xixj ])

satisfies

eTrm(ri)
FM∆xixjF ∗diag([eiq

−1
m (1)·∆xixj , . . . , eiq

−1
m (m2)·∆xixj ])erm(rj)

= eTrm(ri)
FM∆xixjF ∗erm(rj)e

irj ·∆xixj(23)

= eirj ·∆xixj

∑
s∈Dm×m

eTrm(s)M
∆xixj erm(s)e

i(ri−rj)·s

= eirj ·∆xixj

∑
s∈Dij

ω(s)ω∗(s−∆xixj )∑
r∈Jxi,s

|ω(r)|2
ei(ri−rj)·s

= ei(ri+rj)·∆xixj
/2

∑
s∈T∆xixj

/2Dij

ω(s+ ∆xixj
/2)ω∗(s−∆xixj

/2)∑
r∈Jxj ,s

|ω(r)|2
ei(ri−rj)·s

=: ei(ri+rj)·∆xixj
/2Vωij (∆xixj ,Φrirj ),

where Φrirj := ri − rj ,

ωij(r) :=
ω(r)√∑

s∈J(xi+xj)/2,r
|ω(s)|2

χDij∪T∗∆xixj
/2

Dij∪T∗∆xixj
Dij

and Vωij is the Fourier-Wigner transform [34] of the function ωij . To sum up, the (`(i, ri), `(j, rj))-th

entry of PFQ is Vωij (∆xixj ,Φrirj )ei(ri+rj)·∆xixj
/2.

Recall that the Fourier-Wigner transform of ωij is also called the ambiguity function of ωij , which
measures the spatial lag ∆xixj

and frequency shift Φrirj between the two diffraction images when
ιxi

(Dm×m)∩ ιxj
(Dm×m) 6= ∅. It is well-known that the absolute value of the ambiguity function gauges

how difficult we can distinguish two objects, that is, how similar two objects are [34, p.33]. Thus
Vωij (∆xixj ,Φrirj ) can be viewed as a sort of affinity measuring the relationship between two illumination
windows. Also, from (23) we know that the phase information of Fdiag(ω) gets involved in Vωij , in

particular when i = j. Indeed, when we are working with the same patch, M0 is a diagonal matrix with
real entries |ω|2, so FM0F ∗ contains only the phase information of Fdiag(ω), which influences the phase
estimation.

As a result, we have

ζ∗PFQζ =
∑

i,j:Oij 6=∅

∑
ri,rj∈Dm×m

ζ∗(i)(ri)Vωij
(∆xixj

,Φrirj )ei(ri+rj)·∆xixj
/2ζ(j)(rj).(24)

Consider a graph G = (V,E), where the vertices V = XK ×Dm×m are constituted by the pixels of all
illuminated images, and there an edge between (i, ri) and (j, rj) for all ri, rj ∈ Dm×m if ιxi(D

m×m) ∩
ιxj (Dm×m) 6= ∅. Please see Figure 4 for an illustration. The equation (24) is thus built from the graph
G with a “phase synchronization function” Ω defined on E:

Ω : ((i, ri), (j, rj)) ∈ E 7→ Vωij
(∆xixj

,Φrirj )ei(ri+rj)·∆xixj
/2,
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that is, we have

ζ∗PFQζ =
∑

i,j:Oij 6=∅

∑
ri,rj∈Dm×m

ζ∗(i)(ri)Ω((i, ri), (j, rj))ζ(j)(rj).

Note that Ω depends on the illumination scheme and the lens. Intuitively, if two illumination windows
overlap, they have common information in the Fourier space up to some phase difference determined by
the relative position of the illuminations, while this information is contaminated by the non-overlapping
parts of the two illuminations.

3x3	  pixels	  

Figure 4. Left: the illuminative figure for the ptychographic problem. We assume that
the unknown object of interest is covered by 4 illumination windows of size 3× 3. Right:
the graph G associated with the algorithm aiming to solve the ptychographic experiment.
The block spots are vertices associated with pixels of each illumination image.

With the above understanding of the PFQ matrix and the inspiration of [59], we link the ptychography
imaging problem to the synchronization problem defined on the graph G = (V,E). Now we take the
amplitude information a into account. It is well known that the larger the amplitude is, the more
important its associated phase is if we want to “reconstruct the image”. Thus, we would pay more
attention on reconstructing the phase of pixels in the diffraction images with larger amplitudes, for
example, we might want to maximizing the following functional with the constraint ζ ∈ T1:

ζ∗diag(a)PFQdiag(a)ζ =
∑

i,j:Oij 6=∅

∑
ri,rj∈Dm×m

ζ∗(i)(ri)a(i)(ri)Ω((i, ri), (j, rj))a(i)(ri)ζ(j)(rj).(25)

5.1. Spectral relaxation and phase synchronization. Based on the above understanding regarding
the PFQ and the amplitude information, in this section we propose two relaxations of the non-convex
optimization problems discussed above to estimate the phase, which lead to a better initial value of the
AP algorithm.

The first algorithm is directly motivated by (25) where we take the affinity information among vertices
and phase relationship into account. We have the following observations.

• the phase between vertices (i, ri) and (j, rj) are related by a non-unitary transform Ω((i, ri), (j, rj)),
which modulation indicated the affinity;

• the larger the amplitude a(i)(ri) is, the more effort we should put in recovering the phase;
• the phase ramping effect introduced by

ω̃ :=
Fdiag(ω∨)

|Fdiag(ω∨)|
χ|Fdiag(ω∨)| + (1− χ|Fdiag(ω∨)|),

as is shown in (23).

These observations suggest us to consider the following relaxation and its relationship with the recent
developed data analysis framework connection graph Laplacian (CGL) [60, 61, 5, 20], which we discuss
now. First, we define the affinity function (or weight function) w : E → R+ to encode the affinity
information:

w((i, ri), (j, rj)) := a(i)(ri)|Ω((i, ri), (j, rj))|a(j)(rj)

when ((i, ri), (j, rj)) ∈ E, and the relationship function g : E→ U(1) so that

g((i, ri), (j, rj)) := ω̃(ri)

(
Ω((i, ri), (j, rj))

|Ω((i, ri), (j, rj))|
χΩ((i,ri),(j,rj))6=0 + (1− χΩ((i,ri),(j,rj))=0)

)
ω̃∗(rj)
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when ((i, ri), (j, rj)) ∈ E, which purely encodes the phase relationship among vertices. Given G, w and
g, we further define a complex Km2 ×Km2 matrix S so that

S(`(i, ri), `(j, rj)) =

{
w((i, ri), (j, rj))g((i, ri), (j, rj)) when ((i, ri), (j, rj)) ∈ E
0 otherwise

and a complex Km2 ×Km2 diagonal matrix D so that

D(`(i, ri), `(i, ri)) =
∑

((i,ri),(j,rj))∈E

w((i, ri), (j, rj)).

Then, the CGL matrix is defined as D−1S. Note that D is invertible by Assumption 2.1 and the positivity
assumption of w. We thus propose our first phase estimator to be the phase of the top eigenvector of
D−1S, which we call CGL-phase synchronization (CGL-PS).

We mention that the CGL is a generalization of the well known graph Laplacian in that it takes not
only the affinity between vertices into account but also the relationship between verticex [60]. To be more
precise, if we take a complex valued function θ : V→ C, we have the following expansion

[D−1Sθ](`(i, ri)) =

∑
((i,ri),(j,rj))∈E w((i, ri), (j, rj))g((i, ri), (j, rj))θ(j, rj)∑

((i,ri),(j,rj))∈E w((i, ri), (j, rj))
.

This formula can be viewed as a generalized random walk on the graph. Indeed, if we view the complex-
valued function θ as the status of a particle defined on the vertices, when we move from one vertex
to the other one, the status is modified according to the relationship between vertices encoded in g.
Clearly, if the complex-valued status θ in all vertices are “synchronized” according to the described
relationship g, that is, θ(i, ri) = g((i, ri), (j, rj))θ(j, rj) for all ((i, ri), (j, rj)) ∈ E, then [D−1Sθ](`(i, ri))
will the same as θ(i, ri), and hence θ∗D−1Sθ is maximized. Thus, the top eigenvector of D−1S contains
the “synchronized phase” we are after. We mention that D−1S is similar to the Hermitian matrix

D−1/2SD−1/2, so evaluating its eigenstructure can be numerically efficient. See Section 6 for the numerical
performance of this approach.

The synchronization property of CGL has been studied in [5, 20] and its statistical property and ro-
bustness behavior in the block random matrix framework have been reported in [27, 28]. In addition,
under the manifold setup [60, 61], it asymptotically converges to the heat kernel of the associated con-
nection Laplacian, which top eigenvector-field is the most parallel vector field branded in the manifold
structure. We refer the reader to the literature for detail mathematical statements.

The second algorithm we propose has the same flavor, but we consider the amplitude information in
a different way compared with (25). Indeed, the amplitude is taken into consideration as a truncation
threshold leading to the following relaxation of (22) to estimate the phase. Based on the amplitude, we
define a thresholding matrix

Ta := diag(χa>εa),

where εa ≥ 0 is the threshold chosen by the user, and evaluate the following functional

argmax
ζ∈CKm2 , ‖ζ‖=1

ζ∗TaPFQTaζ,

which is equivalent to finding the top eigenvector of the Hermitian matrix TaPFQTa. Our second pro-
posed estimator of the phase to the ptychography problem is then the phase of the top eigenvector of
TaPFQTa. We call this approach to the truncation phase synchronization (t-PS) algorithm. See Section
6 for its numerical performance. This optimization problem is essentially different from (21) due to the
thresholding, and this difference plays an essential role in the optimization. Its theoretical property is
beyond the scope of this paper and will be reported in another paper.

6. Numerical results

We begin with describing the two lens we use. The first one is a typical illumination probe in an
experimental system. The illuminating beam is formed by a small lens, with a dark “beam-stop” to
sort-out harmonic contaminations formed by diffractive Fresnel lenses, represented by a circular aperture
in the Fourier domain. The lens is denoted as ωs and is illustrated in the top row of Figure 5. The second
is a band-limited random (BLR) lens, denoted as ωBLR which we describe now. Note that a small lens can
only “connect” Fourier frequencies that are close together, while a wide lens produces a small illumination
and the illumination scheme can only connect frames that are near each other. The intuition behind the
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synchronization analysis of the ptychographic problem leads us to suggest a different lens that enables
to connect pixels across the data space. Experimental observations confirm that diffuse probes [36, 48],
and wide apertures [47] produce better results in ptychography. We design our second lens by setting
the amplitude and a random phase of an annular aperture in the Fourier domain, then iteratively adjust
the amplitude in real and Fourier domains to determine a lens with a circular focus and given amplitude.
The motivation for the limited size of the focus is to reduce the requirements of the experimental detector
response function (such as pixel size). Such lens can be fabricated using lithographic techniques [16]. The
second lens is described in the bottom row of Figure 5.

We begin with a small problem – an object of size 256× 256 pixels, that is n = 256, shown in Figure
6, using the lens ωs. We collect k = 32 × 32 frames, with 128 × 128 pixels, that is m = 128. The
frames are distributed uniformly to cover the object: we start by setting the positions xi = (xi, yj)
on a square grid lattice, with xi − xi+1 = ∆x and yi − yi+1 = ∆y. In this first experiment, we take
∆x = ∆y = 8. Then we shear odd rows, that is, xi, by ∆x/2 and perturb the position by a random
perturbation randomly sampled uniformly from [−1.5,+1.5] in both xi and yi. Fractional pixel shifts are
accounted by interpolation of the illumination matrix. We use the following algorithms

AP

(1) start with random object: ζ(0) = FQ(random) ;
(2) compute ζ(`) = [PFQPa]

`ζ(0), ` ≥ 1 chosen by the user;

(3) ψ
(`)
AP = (Q∗Q)−1Q∗Fζ(`).

CGL-PS

(1) find the largest eigenvalue v0 of the CGL matrix D−1S;
(2) ψCGL-PS = (Q∗Q)−1Q∗FPav0.

t-PS

(1) find the largest eigenvalue v0 of the phase synchronization matrix TaPFQTa, where Ta =
diag(χa>εa);

(2) ψt-PS = (Q∗Q)−1Q∗FPav0.

CGL-PS+AP

(1) find the largest eigenvalue v0 of D−1S;
(2) compute ζ(`) = [PFQPa]

`v0, ` ≥ 1 chosen by the user;

(3) ψ
(`)
CGL-PS+AP = (Q∗Q)−1Q∗Fζ(`).

t-PS+AP

(1) find the largest eigenvalue v0 of TaPFQTa;
(2) compute ζ(`) = [PFQPa]

`v0, ` ≥ 1 chosen by the user;

(3) ψ
(`)
t-PS+AP = (Q∗Q)−1Q∗Fζ(`).

Also, the convergence is monitored by:

ε
(`)
a := 1

‖a‖‖[I − Pa]ζ
`‖,

ε
(`)
FQ := 1

‖a‖‖[I − PFQ]ζ`‖
ε

(`)
aFQ := 1

‖a‖‖[Pa − PFQ]ζ`‖.
ε

(`)
0 := 1

‖a‖ mint ‖ζ` − eitFQψ0‖,
ε

(`)
∆` := 1

‖a‖‖ζ
` − ζ`+1‖,

The result of the first experiment is shown in Figure 6.
We repeat the same experiment with an image of a self-assembled cluster of 50 nm colloidal gold

nanoparticles obtained by Scanning Electron Microscopy. To produce a complex image, the gray-scale
value are projected onto a circle in the complex plane. The size is 256 × 256 pixels and we use the lens
ωs. The result of the second experiment is shown in Figure 7.

A few things to notice from Figures (6,7): the first is that ‖ζ` − ζ`+1‖ = ε
(`)
∆`‖a‖ does not decrease

monotonically, and the second is that the eigenvector with the largest eigenvalue of TaPFQTa is already
quite a good image, and last, the convergence rate is similar but t-PS produces a better start. Also note
that typically εFQ, εa, εaQ are very similar and overlap.
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We compare these two illumination functions, ωs and ωBLR, with the same two objects with the same
parameters as before. The results are shown in Figure 8 and Figure 9. Clearly t-PS produces a better
start with the new illumination. In this example, such better start also leads to higher rate of convergence.

Yet next, we test the algorithm in a larger problem, an object of 512×512 pixels, that is n = 512, with
the same lens size (128 × 128). We increase the field of view of the illumination scheme with increased
spacing among frames ∆x = 16 and ∆y = 16. One of the issues of projection algorithms such as AP
is that frames that are far apart communicate very weakly with each other, this leads to slower rate of
convergence. This is an issue when we are limited by the number of iterations, due to high data rate and
finite computational resources. In Figure 10 we show the result of 101 iterations of AP with holes in the
scarf, while t-PS gives a good initial start that leads to improved SNR. Notice that the hole in the scarf
and other defects produced by AP alone.

In our last numerical experiment, we introduce new algorithms that lead to over 20× acceleration
in the rate of convergence. First, we use the RAAR algorithm [46] described below which is popular
among the optical community [19] (using RAAR in combination with a shrink-wrap algorithm [50] to
enforce sparsity) because it often leads to improved convergence rate. Second we introduce a frame-
wise synchronization technique to adjust the phase of every frame at every iteration based on existing
frame-wide local information.

RAAR

(1) start with random object ζ(0) = FQ(random)
(2) compute ζ(`) = [2βPFQPa + (1− 2β)βPa +β(PFQ− I)]`ζ(0) where β = 0.9 and ` ≥ 1 is chosen

by the user.

(3) ψ
(`)
RAAR = (Q∗Q)−1Q∗Fζ(`),

t-PS+RAAR

(1) find the largest eigenvalue v0 of the kernel TaPFQTa
(2) compute ζ(`) = [2βPFQPa + (1 − 2β)βPa + β(PFQ − I)]`Pav0, where β = 0.9 and ` ≥ 1 is

chosen by the user;

(3) ψ
(`)
t-PS+RAAR = (Q∗Q)−1Q∗Fζ(`),

t-PS+synchro-RAAR

(1) t-PS:
find the largest eigenvalue v0 of the kernel TaPFQTa. Start

ζ(0) = PFQPav0;

(2) frame-wise synchronization:
find the smallest eigenvalue ξ(l) ∈ CK of the matrix H(l) of size K × K where the

(i, j)-th entry is

H
(l)
i,j := (Paζ

(l)∗)(i)

[
δi,jIm2 − FQ(i)(Q

∗Q)−1Q∗(j)F
∗
]

(Paζ
(l))(j)

and replace PFQ by

P
(l)
FQ := diag

(
B
ξ(l)

|ξ(l)|

)∗
PFQ diag

(
B
ξ(l)

|ξ(l)|

)
,

where B is a K ×K diagonal block matrix with its diagonal the m2 × 1 row vector 1T ;

(3) RAAR with P
(l)
FQ :

ζ(l) = [2βP
(l−1)
FQ Pa + (1− 2β)βPa + β(P

(l−1)
FQ − I)]ζ(l−1);

where β = 0.9;
(4) repeat (2)-(5) ` ≥ 1 steps until convergences or maximum iteration, where ` is determined

by the user;

(5) ψ
(`)
t-PS+synchro-RAAR = (Q∗Q)−1Q∗Fζ(`),

The frame-wise synchronization, step (2), is motivated by the augmented approach [51]. We estimate a
phase factor for each frame based on the existing phase estimator of each frames, which leads to long-range
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phase synchronization across the image. Indeed, we consider

argmin
ξ∈CK ; |ξ|=1

‖(I − PFQ)diag(Paζ
(l))Bξ‖,

which is relaxed by finding the smallest eigenvector of H, that is, H comes from expanding the functional
‖(I − PFQ)diag(Paζ

(l))Bξ‖2. The estimated frame-wise phase corrector ξ(l) are thus distributes to all
the pixels by B. We mention that this frame-wise synchronization can be justified by realizing that at
each iteration, H(l) can be understood as the CGL built from the graph associated with the illumination
windows so that the estimated frame-wise phases are synchronized according to the CGL H(l). Thus,
this frame-wise phase estimation leads to the long range phase synchronization. The nomination of
“synchro-RAAR” is to emphasize that we do not use PFQ in the ordinary RAAR step but use the frame-

wise synchronized PFQ, that is, P
(l−1)
FQ in the update. We tested these algorithms, as well as the AP

and t-PS+AP algorithms, on the same data setup in Figure 10, and the convergence results of different
algorithms are shown in Figure 11 for comparison. Notice the change of scale in the last plot, where
convergence is over 40× faster than the AP algorithm.

7. Conclusion

In this paper, we demonstrate the global convergence of the alternating projection (AP) algorithm to
the unique solution up to a global phase factor, and apply it to the ptychographic imaging problem. To
be more precise, we have shown that the AP algorithm gives the inverse transform of the phase retrieval
problem when the frame is generic. We also survey the intimate relationship between the AP algorithm
and the notion of phase synchronization (PS) and propose two algorithm, CGL-PS and t-PS, to quickly
construct an accurate initial guess for the AP algorithm for large scale diffraction data problems. In
addition, by combining the RAAR algorithm with the frame-wise synchronization, the convergence is
over 40× faster than the AP algorithm and is about 10× faster than the RAAR algorithm.

There are several problems left unanswered in this paper. We mention at least the following four
directions. First, how to design the best lens and illumination scheme so that we can obtain an accurate
reconstruction for the real samples; given a detector, with a limited rate, dynamic range and response
function, what is the best scheme to encode more information per detector channel. Second, the noise
influence on the convergence behavior needs further investigation. Experimental uncertainties include
not only photon-counting statistics but also perturbations of the lens [64, 63, 31], illumination scheme
(positions), incoherent measurements, detector response and discretization, time dependent fluctuations,
etc. Third, spectral methods such as the proposed algorithms in this paper (CGL-PS and t-PS) have the
potential to be scaled up on high-performance computing architectures to handle the big imaging data in
the coming new light source era [18, 9]. Last, although RAAR, synchro-RAAR and other iterative schemes
perform well in practice, their convergence behavior needs to be further studied. Can we design better
iterative methods based on our findings that exploit phase synchronization schemes more efficiently?
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(a) Illumination: ωs (b) Fourier transform of ωs

(c) Illumination: ωBLR (d) Fourier transform of ωBLR

Figure 5. Illumination functions and their Fourier transform. The top row is the small
lens ωs and the bottom row is the band-limited random (BLR) lens ωBLR. The phase of
the complex illumination is represented in color.
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Figure 6. Results on the Barbara image of size 256× 256 with ωs lens and the illumi-
nation scheme described in the content (∆x = ∆y = 8 with perturbation). For the t-PS
algorithm, we set εa so that it selects 98% of the highest values of a. (a) the ground truth;

(b) ψ
(1)
AP; (c) ψt-PS; (d) ψCGL-PS; (e) ψ

(101)
t-PS+AP+AP; (f) ψ

(101)
GCL-PS+AP; (g) convergence of

AP with a random start; (h) convergence of AP with the t-PS start; (i) convergence of
AP with the CGL-PS start.
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Figure 7. Results on the gold ball image of size 256× 256 with ωs lens and the illumi-
nation scheme described in the content (∆x = ∆y = 8 with perturbation). For the t-PS
algorithm, we set εa so that it selects 80% of the highest values of a. (a) the ground truth;

(b) ψ
(1)
AP; (c) ψt-PS; (d) ψCGL-PS; (e) ψ

(101)
t-PS+AP+AP; (f) ψ

(101)
GCL-PS+AP; (g) convergence of

AP with a random start; (h) convergence of AP with the t-PS start; (i) convergence of
AP with the CGL-PS start.
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(d) ψt-PS with ωBLR
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(g) ψCGL-PS with ωBLR (h) truth
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(i) CGL-PS+AP

Figure 8. Comparison of lens ωs and lens ωBLR on the Barbara image of size 256× 256
with ωs lens and the illumination scheme described in the content (∆x = ∆y = 8 with
perturbation). For the t-PS algorithm, we set εa so that it selects 98% of the highest
values of a. The top row is the result with lens ωs; from left to right: the ψt-PS, the
convergence of the AP algorithm, and the convergence of AP+t-PS algorithm. The
middle row is the result with lens ωBLR; from left to right: the ψt-PS, the convergence of
AP with a random start, and the convergence of AP with the t-PS start. The bottom
row, from left to right: the ψCGL-PS, the ground truth, and the convergence of AP with
the CGL-PS start.
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(a) ψt-PS with ωs
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(d) ψt-PS with ωBLR
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(g) ψCGL-PS with ωBLR (h) truth

0 20 40 60 80 100
10

−2

10
−1

10
0

 

 

ε
(`)
aF Q

ε
(`)
a

ε
(`)
F Q

ε∆`

ε
(`)
0
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Figure 9. Comparison of lens ωs and lens ωBLR on the gold ball image of size 256×256
with ωs lens and the illumination scheme described in the content (∆x = ∆y = 8 with
perturbation). For the t-PS algorithm, we set εa so that it selects 80% of the highest
values of a. The top row is the result with lens ωs; from left to right: the ψt-PS, the
convergence of the AP algorithm, and the convergence of AP+t-PS algorithm. The
middle row is the result with lens ωBLR; from left to right: the ψt-PS, the convergence of
AP with a random start, and the convergence of AP with the t-PS start. The bottom
row, from left to right: the ψCGL-PS, the ground truth, and the convergence of AP with
the CGL-PS start.
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(f) t-PS+AP

Figure 10. Results on a larger object. The object of interest is the Barbara image
of size 512 × 512 with ωBLR lens and the illumination scheme described in the content
(∆x = ∆y = 16 with perturbation). For the t-PS algorithm, we set εa so that it selects

80% of the highest values of a. (a) ground truth; (b) ψt-PS; (c) ψ
(101)
AP ; (d) ψ

(101)
t-PS+AP; (e)

convergence of AP with random start; (f) convergence of AP with t-PS start. Notice
that AP alone produces a hole in the scarf, which may lead the viewer to the wrong
interpretation.
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(d) t-PS+RAAR
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(e) CGL-PS+AP
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(f) t-PS+syncro-RAAR

Figure 11. Convergence rate for different algorithms applied to the Barbara image of
size 512 × 512 with ωBLR lens and the illumination scheme described in the content
(∆x = ∆y = 16 with perturbation). For the t-PS algorithm, we set εa so that it selects
80% of the highest values of a. (a) the convergence of AP with a random start. Note
that it is the zoom out figure of subfigure (e) in Figure 10; (b) the convergence of RAAR
with a random start; (c) the convergence of AP with the t-PS start. Note that it is
the zoom out figure of the subfigure (f) in Figure 10; (d) the convergence of RAAR
with the t-PS start; (e) the convergence AP with the CGL-PS start; (f) the convergence
t-PS+synchro-RAAR. Notice the change of scale in the last plot, where convergence is
over 40× faster than the AP algorithm and is about 10× faster than the RAAR algorithm.
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